You searched for: “earth
earth
1. The land surface of the world.
2. The realm of mortal existence; the temporal world.
This entry is located in the following unit: Quotes: Earth, World (page 1)
Earth: Gaea, Tellus
Greek: Gaea (goddess)
Latin: Tellus (goddess)
This entry is located in the following unit: gods and goddesses from Greek and Latin Myths (page 1)
Quotes: Earth, World
A jigsaw puzzle with a peace missing: earth quotes.
This entry is located in the following unit: Quotes: Quotations Units (page 2)
Sorcery and Witchcraft; Earlier, the Moon, Earth, and the Underworld: Hecate, Trivia
Greek: Hecate (goddess)
Latin: Trivia (goddess, whose name means “of the three ways” because, like Hecate, she was worshipped at crossroads)
This entry is located in the following unit: gods and goddesses from Greek and Latin Myths (page 3)
More possibly related word entries
Units related to: “earth
(Greek: land, soil, field, fields; earth; wild, as one who lives in the fields; wildness; savage, savageness)
(Modern Latin: tellus, the "earth"; metal)
(Greek: earth, of the earth, soil, dirt)
(Gaia, Earth goddess of the ancient Greeks, she was called Gaea, Terra Mater, "Earth Mother" by the Romans; third planet from the sun)
(Greek: earth, land, soil; world; Gaia (Greek), Gaea (Latin), "earth goddess")
(Latin: earth, ground, soil)
(Latin: earth, world)
(Greek: pedon, ground, soil, earth)
(Greek: mud, earth, clay)
(our planet, whose interior is very hot but whose exterior is not so hot; a minor planet with major problems; and a jigsaw puzzle with a peace missing)
(Latin: bottom; under surface; earth, dirt)
(Latin: earth)
(Latin: earth, dry land, land)
(the Sun god who brings life-giving heat and light to Earth)
(Modern Latin: chemical element; from Greek and Latin, cadmia, earthy or earth; metal)
(Modern Latin: chemical element; named for the asteroid Ceres which was discovered in 1803 and named for the Roman goddess Ceres; rare earth)
(Modern Latin: chemical element; from Greek, dysprositos, hard to get at; difficult to access; hard to obtain; rare earth)
(Modern Latin: chemical element; named for Ytterby, a village in Sweden; where gadolite was found; rare earth)
(Modern Latin: chemical element; named for Europe; rare earth)
(Modern Latin: chemical element; named in honor of Enrico Fermi, an Italian-American physicist; rare earth)
(Modern Latin: chemical element; named after gadolinite, a mineral named for Johan Gadolin (1760-1852), a Finnish chemist and mineralogist; rare earth)
(Modern Latin: chemical element; Holmia, the Latinized form of Stockholm; rare earth)
(Modern Latin: chemical element; from Greek, lanthanein, "hidden", "to be concealed"; rare earth)
(Modern Latin: chemical element; from Gaulish-Latin, Lutetia, a fortified town of a Gaulish tribe of the Parisii, the ancient name of Paris; rare earth)
(Modern Latin: chemical element; from Greek, neo, "new" plus didymon, "twin" [with the element praseodymium]; rare earth)
(Greek: prasios, "green", plus didymos, "twin" [with the element neodymium] because of a green line in its spectrum; rare earth)
(Modern Latin: named for the Greek god Prometheus, who stole fire from heaven [the sun] for mankind; radioactive metal rare earth)
(Modern Latin: named for a Scandinavian mineral samarskite; rare earth)
(Modern Latin: named for Ytterby, a village in Sweden; rare earth)
(Modern Latin: from Greek, Thule, the Greek name for land north of Britain or for Scandinavia; rare earth)
(Modern Latin: named for Ytterby, a quarry in Sweden where the first rare earth had been discovered; rare earth)
(Modern Latin: named for Ytterby, near Vaxholm in Sweden; rare earth)
(Greek: inclination, slope; the [supposed] slope of the earth from the equator towards the poles; hence, the latitudinal zone of the earth and prevailing weather in a given zone)
(without dung beetles, the earth would be one big sphere of dung)
(drawings on the ground by arranging stones, gravel, or earth)
(eating dirt or earth is a common practice on a global scale)
("hot-earth" steam can be utilized for many practical applications)
(Latin: a round body, a ball; round, a sphere; the earth; "sphere" came from Latin globus, "round mass, sphere"; related to gleba, "clod, soil, land". Sense of "planet earth," or a three-dimensional map of it, appeared first in 1553)
(Greek: stone, rock; hard consolidated mineral matter; hard matter formed from mineral and earth material; hard substance that is solid)
(Diana, or Luna, Roman goddess of the Moon, animals, and hunting)
(myths and science fiction regarding nanotechnology)
(Greek > Latin: "the great river encompassing the whole earth"; hence, the "great Outward Sea" [as opposed to the "Inward" or Mediterranean]; the ocean)
Word Entries containing the term: “earth
earth electrode, ground electrode
An electrode which is connected to a ground.
This entry is located in the following unit: electro-, electr-, electri- (page 4)
Fumaria officinalis; earth smoke
1. A delicate European herb with grayish leaves and spikes of purplish flowers; formerly used as a medicine: "Fumaria officinalis are parts that are used from flowering parts and leaves that were used as laxatives, diuretic, epidermal maladies, and biliary disease."
2. Etymology: from the 14th century via Old French fumeterre from medieval Latin fumus terrae, "smoke of the earth"; because of its grayish foliage.

The "smoky" or "fumy" origin of its name is also said to come from the translucent color of its flowers, giving them the appearance of smoke or of hanging in smoke, as well as the slightly gray-blue haze color of its foliage, which was thought to resemble smoke coming from the ground.

This entry is located in the following unit: fumi-, fum- (page 1)
Nanotechnology: Fear Negative Results for Life on Earth
A presentation of mostly unfounded fears of nanotechnology and how it may affect life on earth in a negative way.
This entry is located in the following unit: Nanotechnology: Index of Articles (page 1)
rare-earth alloy
Any metal alloy containing appreciable amounts of one or more rare-earth elements; for example, mischmetal.

Mischmetal is an alloy consisting of a crude mixture of cerium, lanthanum, and other rare-earth metals obtained by electrolysis of the mixed chlorides of the metals dissolved in fused sodium chloride.

They are used in making aluminum alloys, in some steels and irons, and in coating the cathodes of glow-type voltage regulator tubes.

This entry is located in the following unit: rar-, rare- + (page 1)
rare-earth elements, REE, critical resources for high technology
The rare-earth elements (REE) form the largest chemically coherent group in the chemical periodic table.

Although they are generally unfamiliar, the rare-earth elements are essential for many hundreds of applications.

The versatility and specificity of the rare-earth elements have given them a level of technological, environmental, and economic importance considerably greater than might have been expected from their relative obscurity.

As technological applications of rare-earth elements have multiplied over the past several decades, demand for several of the less abundant (and formerly quite obscure) REE has increased dramatically.

Some of the Applications of the Rare-Earth Elements

  • Color cathode-ray tubes and liquid-crystal displays used in computer monitors and televisions employ europium as the red phosphor and no substitute is currently known.
  • Fiber-optic telecommunication cables provide much greater bandwidth than the copper wires and cables they have largely replaced.
  • Fiber-optic cables can transmit signals over long distances because they incorporate periodically spaced lengths of erbium-doped fiber that function as laser amplifiers because it alone possesses the required optical properties.
  • Permanent magnet technology has been revolutionized by alloys containing neodymium, samarium, gadolinium, dysprosium, or praseodymium.
  • Small, lightweight, high-strength rare-earth element magnets have allowed miniaturization of numerous electrical and electronic components used in appliances, audio and video equipment, computers, automobiles, communications systems, and military gear.
  • Several rare-earth elements are essential constituents of both petroleum fluid cracking catalysts and automotive pollution-control catalytic converters.
  • Although more expensive, lanthanum-nickel-hydride batteries offer greater energy density, better charge-discharge characteristics, and fewer environmental problems when they are recycled or disposed of.
  • The rare earth elements are essential for a diverse and expanding array of high-technology applications, which constitute an important part of the industrial economy of the United States.
  • Long-term shortages or unavailability of rare-earth elements would force significant changes in many technological aspects of American life.
  • State-run Chinese firms sharply expanded production and slashed prices of rare earths in the 1990's, forcing producers in the United States (previously the world’s leading producer and exporter) and elsewhere out of the market which no doubt will change now that China has restricted its exports of rare-earth minerals.
—Compiled primarily from information located at the
U.S. Geological Survey web site.
This entry is located in the following unit: rar-, rare- + (page 1)
rare-earth magnet
A magnet which is manufactured with a rare-earth element; such as,a rare=earth cobalt magnet.

It can have as much as ten times more coercive force than a typical magnet.

This entry is located in the following unit: rar-, rare- + (page 1)
rare-earth mineral
Any mineral that is composed of a high percentage of rare-earth elements; such as, ytterbium and cerium.
This entry is located in the following unit: rar-, rare- + (page 1)
rare-earth minerals, rare earth minerals; rare earth elements
1. A collective term for a series of fifteen related metallic elements having atomic numbers ranging from 57 to 71, and placed in a special row on the periodic table.

    The group consists of the following elements which are not earths and are not literally rare; however, they are called "rare earth minerals" because they were associated with more familiar substances known as "common earth".

    This Lanthanide series is shown with their atomic numbers, their symbols, and their names with links to much more detailed information about the history, who and where they were discovered, terms in four other languages, etc. for each of the listed elements as shown in the Periodic Table of Chemical Elements:

  • 57 La, Lanthanum
  • 58 Ce, Cerium
  • 59 Pr, Praseodymium
  • 60 Nd, Neodymium
  • 61 Pm, Promethium
  • 62 Sm, Samarium
  • 63 Eu, Europium
  • 64 Gd, Gadolinium
  • 65 Tb, Terbium
  • 66 Dy, Dysprosium
  • 67 Ho, Holmium
  • 68 Er, Erbium
  • 69 Tm, Thulium
  • 70 Yb, Ytterbium
  • 71 Lu, Lutetium
  • The elements range in crustal abundance (igneous crust or outer layer of the earth) from cerium, the 25th most abundant element of the 78 common elements in the earth's crust at 60 parts per million, to thulium and lutetium, the least abundant rare-earth elements at about 0.5 part per million.

2. Minerals which contain one or more rare-earth elements as major metal constituents.

Seventeen rare-earth minerals are used in a wide variety of commercial and military applications ranging from precision guided smart bombs, to efficient light bulbs, car batteries, sophisticated radar systems, mobile phones, clean energy technology, DVDs, very large wind turbines, phosphors for monitors, televisions, lighting, catalytic converters, glass polishing, petroleum refining; plus other modern applications.

Rare-earth minerals are also used in computer display screens, motherboards, hard drives, chips, and other-related elements in computers; rare metals like indium is used in liquid-crystal display screens, antimony is used in silicon wafers for semiconductors, neodymium is a vital element in industrial batteries which are used in electric motors and it is found in parts used in the speakers of cellphones, and dysprosium is used in laser materials.

Cerium is needed in such high-profile and sensitive applications as optical sensors used in F-15 fighter aircraft, and the windows and domes at the National Ignition Facility (NIF) which explores the world of high-energy-density physics.

Over 50 pounds of rare earth metal can be found in each Toyota Prius automobile and Japan is the world’s largest importer of rare earths for such products.

Hybrid vehicles use a special neodym magnet made with neodymium to help produce the energy they require to offset their usage of gas and oil.

On April 20, 2010, neodymium was priced at about $46.50 a kilogram (2.20 pounds). Since China made export rules and regulations in July, 2010, prices went up to $92 a kilogram (2.20 pounds).

Rare earth production outside of China by other countries has been limited by higher costs of mining (compared to those of China) and by concerns regarding environmental pollutions from mining wastes by other nations.

The United States previously produced all stages of the rare earth material supply chain, but now most rare earth materials processing is performed in China, giving it a dominant position that can affect the worldwide supply and prices of rare earth minerals.

According to the United States Geological Survey (USGS), the name “rare” earth elements is an “historical misnomer”, reflecting the elements’ unfamiliarity, rather than their true rarity.

Even the most scarce of rare earths, lutetium and thulium, are 200 times more abundant than gold in the earth’s crust.

China has about fifty-seven percent of the world’s known reserves, according to the United States Geological Survey. The United States has nine percent of global reserves, Australia has four percent, and Russia has fourteen percent.

Also, according to figures from the U.S. Geological Survey published earlier this year, production from Chinese mines accounted for 120,000 of the 124,000 tons of rare-earth oxides produced globally in 2009; which is more than 97 percent of the available supply; while India, Brazil, and Malaysia made up the rest of the supply or just three percent of the total.

Molycorp, the United States company that owns the Mountain Pass mine in the Mojave Desert of California, announced its intention to raise rare-earths production to meet about a sixth of global demand by 2012, and the company indicated that it would double that output if circumstances justify such an increase of production.

—Compiled from information located in various sources; especially:
The U.S. Geological Survey web site, and
The Chemical Elements List at this Word Info web site.
Additional valuable information is available at this
Rare Earth Elements and their Uses web site.
This entry is located in the following unit: rar-, rare- + (page 1)
rare-earth salt
Any of the various salts of the rare-earth elements from the lanthanide series; especially, a mixture derived from the mineral monazite (a reddish brown phosphate mineral which contains cerium, lanthanum, and some thorium).
This entry is located in the following unit: rar-, rare- + (page 1)
rare-earth screen
An x-ray-intensifying screen made of rare-earth elements; such as, yttrium and gadolinium.

These screens make it possible for lower radiation doses to be used while producing acceptable film densities.

This entry is located in the following unit: rar-, rare- + (page 1)
soil thermometer, earth thermometer
An instrument, commonly a mercury-in-glass thermometer, that is used to measure the temperature of soils.
spherical-earth attenuation
In electromagnetism, attenuation over an imperfectly conducting spherical earth in excess of that over a perfectly conducting plane.

The term attenuation refers to the reduction with distance from the source of the intensity of an electromagnetic signal propagating through the atmosphere caused by the interaction of the signal with gaseous constituents of the atmosphere, aerosols, or hydrometeors.

It also includes the reduction of intensity of a radiation as it passes through a medium and it includes reductions due to both absorption and scattering.

This entry is located in the following unit: sphero-, spher-, -sphere- (page 13)
spherical-earth factor
The ratio of the electric field strength in a wave that would result from propagation over an imperfectly conducting spherical earth to that which would result from propagation over a perfectly conducting plane.
This entry is located in the following unit: sphero-, spher-, -sphere- (page 13)
Word Entries at Get Words: “earth
Earth, Words from the Myths
Gaia, Earth goddess of the ancient Greeks, she was called Gaea, Terra Mater, "Earth Mother" by the Romans; third planet from the sun unit.
(geography includes mapmakers, scientists, explorers of the earth and provides a way to look at both the physical world and the people who live in various parts this globe)
(a glossary, or dictionary, of terms used in geology; the science of the earth including its origin, composition, structure, and history)
(the science of water which denotes the study of the properties, distribution, and movements of water on land surfaces, in the soil, and through the subsurface rocks of the earth)
(There are estimated to be 10,000 million insects living in each square kilometer of habitable land on earth or 26,000 million per square mile)
Word Entries at Get Words containing the term: “earth
alkaline earth metals
These are the second group on the left of the Periodic Table, IIA, which include beryllium, magnesium, calcium, strontium, barium, and radium.

When these elements are combined with oxygen or water, they form compounds with a basic pH.

Alkaline earth metals are not very electronegative. They have just two valence electrons, and will lose them to become positively charged ions or cations.

This entry is located in the following unit: Metallurgy Topics or Metal Technology + (page 1)
The ends of the earth (Zechariah 9:10)
This entry is located in the following unit: Bible Quotations used in modern English (page 4)
The salt of the earth (Matthew 5:13)
This entry is located in the following unit: Bible Quotations used in modern English (page 5)